0F MAXIMIZING
THE WORK NOT DONE

Tampere Goes Agile 28.10.2017

TAM

A

(0

@VilleTormala
villetormala.com



Simplicity - the art
of maximizing the
amount of work not
done - Isessential



1) GLARIFY YOUR MISSION

.. and repeat

When you know exactly what you are aiming
for, you can use extreme criteria to leave
things out.

Saying “no” is about having a clear criteria.

Only dthen, what you don’t do becomes as important as what
you do.




Being purpose and mission driven is not easy

On the other hand, doing little bit of all the
248 things means getting nothing done.

(O)—

Adopted from: Essentialism: The Disciplined Pursuit of Less, Greg McKeown



2) DO ONE THING AT A TIME

No, you are probably doing more

It’s impossible to optimize value without prober

feedback cycle. That is, it is impossible to YAGNI with a big
upfront design.

ADoing the work is supposed to create more knowledge about
what to do next, what to leave out and when to stop.

Awork in small pieces, keep making them smaller all the time.

AOptimizing value is about delivering as little software as
possible.



It’s not just about “continuous delivery.”
it's about how different ways of
working provide different capability
and tools for making things simple.
Afocus
ADeciding late and having more options

ARemoving unnecessary things
Aaving peace of mind and more time



3) INSIST TECHNIGAL EXCELLENGE

Spot bad SW development mindset

There needs to be a clear and shared understanding

what it means to create a good technical solution.
The idea is to keep things efficient and fun in the long run.

A “Add value” = add more stuff A “Improve things” = add new framework
A “Fix things” = add more stuff A “Refactor” = add more stuff
A “Update things” = add more stuff A “Effective work” = add more stuff faster



The notion of "intricate and beautiful
complexities” is almost an oxymoron. Unix
programmers view with each other for "simple
and beautiful” honors — a point that's implicit in

Mcllroy these rules, but is well worth making over.

We used to sit around in the Unix Room saying, 'What can we
throw out? Why is there this option?’ It's often because there
is some deficiency in the basic design — you didn't really hit
the right design point. Instead of adding an option, think
about what was forcing you to add that option.

Basics of the Unix Philosophy, http://www.catb.org/esr/writings/taoup/html/ch01s06.htm|



Yes, there is often essential complexity in
the problem itself. And [



